Калькулятор дробей сложение обыкновенных дробей: Онлайн Калькулятор. Вычисления с обыкновенной и десятичной дробями.

Калькулятор дробей онлайн

Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:

Просто заполните необходимые поля и получите ответ и подробное решение.

Данный калькулятор может работать как с положительными, так и с отрицательными дробями.

При этом нужно помнить, что:

− ac = a− c = − ac

Всегда нужно использовать только последний вариант.

Сложение дробей

С одинаковыми знаменателями

При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.

Формула


ac + bc = a + bc

Пример

Для примера сложим следующие дроби с равными знаменателями:

27 + 47 = 2 + 47 = 67

С разными знаменателями

При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.

Формула (универсальная)


ac + bd = a⋅d + b⋅cc⋅d

Пример №1

Для примера сложим следующие дроби с разными знаменателями:

12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56

Пример №2

Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:

12+14=1⋅22⋅2+14=24+14=2+14=34

Этот же пример можно решить и применяя вышеуказанную универсальную формулу:

12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34

Обратите внимание, что мы сократили дробь:

68=3 ⋅ 24 ⋅ 2=34

Сложение смешанных чисел

Смешанные числа — это такие числа, у которых есть как дробная часть, так и целая.

Преобразуя в неправильную дробь

Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.

Формула


a bc + d ef = b + a ⋅ cc + e + d ⋅ ff

Пример

Для примера сложим два смешанных числа:

312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516

Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:

316=5⋅6+16=5⋅66 + 16=516

Складывая целую и дробную части отдельно

Целую и дробную части смешанных чисел можно складывать по отдельности.

Формула


a bc + d ef = (a + d) + (bc + ef)

Пример

Решим предыдущий пример этим способом:

3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516

Вычитание дробей

Вычитание дробей происходит по тем же принципам, что и сложение.

С одинаковыми знаменателями

Формула


ac − bc = a − bc

Пример

Для примера вычтем одну дробь из другой с равными знаменателями:

35−25=3−25=15

С разными знаменателями

Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.

Формула


ac − bd = a⋅d − b⋅cc⋅d

Пример

Для примера вычтем одну дробь из другой, с разными знаменателями:

34−13=3⋅34⋅3−1⋅43⋅4=912−412=9−412=512

Вычитание смешанных чисел

Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.

Формула


a bc − d ef = b + a ⋅ cc − e + d ⋅ ff

Пример

312−123=1+3⋅22−2+1⋅33=72−53=7⋅32⋅3−5⋅23⋅2=216−106=21−106=116=1⋅6+56=1⋅66 + 56=156

Умножение дробей

При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.

Формула


ac ⋅ be = a ⋅ bc ⋅ e

Давайте рассмотрим несколько примеров:

Пример №1

Умножим дроби с одинаковыми знаменателями:

13⋅23=1⋅23⋅3=29

Пример №2

Умножим дроби с разными знаменателями:

13⋅24=1⋅23⋅4=212=1⋅26⋅2=16

Пример №3

Умножим смешанные числа:

112⋅223=1+1⋅22⋅2+2⋅33=32⋅83=3⋅82⋅3=246=4

Деление дробей

При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.

Формула


ac : be = a ⋅ ec ⋅ b

Давайте рассмотрим несколько примеров:

Пример №1

Разделим одну дробь на другую с таким же знаменателем:

23:13=23⋅31=2⋅33⋅1=63=2

Пример №2

Делим дроби с разными знаменателями:

12:23=12⋅32=1⋅32⋅2=34

Пример №3

Деление смешанных чисел:

412:223=1+4⋅22:2+2⋅33=92:83=92⋅38=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116

См. также

Калькулятор дробей онлайн | umath.ru

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем
дроби называется делимое, а
знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Сложение дробей

Чтобы сложить две дроби, нужно

  1. Привести дроби к общему знаменателю
  2. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Пример. Вычислить сумму дробей и

Решение. Сначала находим общий знаменатель дробей, он равен 10.
После приведения дробей к общему знаменателю складываем числители дробей,
и в результате получаем:

Вычитание дробей

Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Пример. Вычислить разность дробей и

Решение. Сначала находим общий знаменатель дробей, он равен 10.
После приведения дробей к общему знаменателю из числителя первой дроби вычитаем числитель второй дроби,
и в результате получаем:

Умножение дробей

Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели.
Иначе говоря, числитель первой дроби умножить на числитель второй дроби,
а знаменатель первой дроби умножить на знаменатель второй дроби.

Пример. Найти произведение дробей и

Решение. Перемножаем числители и значенатели данных дробей и находим:

Деление дробей

Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на
знаменатель второй, а знаменатель первой дроби умножить на числитель второй.

Пример. Разделить дробь на

Решение. Пользуясь правилом для деления дробей, числитель первой дроби умножаем на знаменатель второй
дроби,
а знаменатель первой дроби — на числитель второй. Получаем:

Онлайн калькулятор дробей с решением

Данный калькулятор помогает вычислить сумму, разность, произведение и частное двух дробей. При этом выводится не
только конечный ответ, но и решение с пояснениями.

Калькулятор дробей: сложение, вычитание, умножение, деление

С помощью онлайн калькулятора дробей вы легко сможете складывать, умножать, вычитать, делить и возводить в степень обыкновенные, смешанные и десятичные дроби, преобразовывать десятичные дроби в обыкновенные, неправильные дроби в смешанные и наоборот. Вам необходимо лишь ввести исходные данные, используя интерфейсные визуальные кнопки или клавиатуру. Дробный онлайн калькулятор очень простой и удобный в использовании.

 
Дробь — число, представляющее одну часть единицы или несколько равных ее частей. Записывается дробь в виде двух чисел, разделенных горизонтальной чертой. Над чертой располагается числитель, под чертой — знаменатель, показывающий на сколько одинаковых частей разделено целое. В числителе показано, сколько частей взято от целого. Когда числитель меньше знаменателя, дробь — правильная, если больше знаменателя — неправильная. Выделить целую часть из правильной дроби нельзя, т.к. результат от деления числителя на знаменатель меньше единицы. В неправильной дроби это возможно. Частное от деления числителя неправильной дроби на ее знаменатель покажет число целых единиц.

Смешанной называется дробь в виде целого числа и правильной дроби. Для преобразования неправильной дроби в смешанную, выделяется число целых единиц путем деления числителя на знаменатель. В смешанной дроби частное от деления — число целых единиц, остаток от деления заносим в числитель.

Дробь без целого числа — простая дробь. Десятичная дробь записывается без знаменателя, т.к. в знаменателе будет только единица с последующими нулями. Из двух десятичных дробей больше та, у которой больше число целых. Если число целых равно, больше число десятых и т.д.

В повседневной жизни мы постоянно сталкиваемся с необходимостью совершать математические действия. Это могут быть простые арифметические расчеты в виде сложения, вычитания, а возможны и более сложные финансовые, хозяйственные расчеты, где приходится сталкиваться с простыми и десятичными дробями, которые окружают нас повсюду, являются неотъемлемой частью нашей жизни. Слив содержимое двух пол-литровых банок (0,5 + О,5 или ½ + ½) в одну литровую мы складываем обыкновенные или десятичные дроби, поделив пирог на равные части по числу присутствующих, мы дробим целое число на доли, хотя совершенно не задумываемся об этом. И это лишь простейшие примеры из нашей обычной жизни. Представителям же естественно-научных, инженерно-технических специальностей постоянно приходится решать более сложные задачи, непосредственно связанные с дробными числами. Неточные инженерные расчеты могут повлечь за собой разрушение мостов, дорог, всевозможных сооружений. Физики с невероятной точностью определяют размеры и количество атомов, из которых состоят тела. Создание счетных машин непосредственно связано с десятичными дробями. Людям разных профессий необходимо знать правила дробей, уметь решать как простейшие, так и сложные задачи на дроби.

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Делить десятичные дроби в столбик немного сложнее, чем целые числа из-за плавающей точки, еще задачу усложняет надобность деления остатка. Поэтому если вы хотите упростить этот процесс или проверить свой результат, можно воспользоваться онлайн-калькулятором, который не только выведет ответ, но и покажет всю процедуру решения.

Делим в столбик десятичные дроби с помощью онлайн-калькулятора

Подходящих под эту цель онлайн-сервисов существует большое количество, однако практически все они мало чем отличаются друг от друга. Сегодня мы подготовили для вас два разных варианта вычисления, а вы, ознакомившись с инструкциями, выберите тот, который будет наиболее подходящим.

Способ 1: OnlineMSchool

Сайт OnlineMSchool был разработан для изучения математики. Сейчас на нем присутствует не только множество полезной информации, уроков и задач, но и встроенные калькуляторы, один из которых мы сегодня задействуем. Деление в столбик десятичных дробей в нем происходит так:

    Откройте главную страницу сайта OnlineMSchool и перейдите в раздел «Калькуляторы».

В первую очередь обратите внимание на инструкцию по использованию, представленную в соответствующей вкладке. Рекомендуем с ней ознакомиться.

Теперь вернитесь в «Калькулятор». Здесь вам следует еще раз убедиться, что выбрана правильная операция. Если нет, измените ее, воспользовавшись всплывающим меню.

Введите два числа, используя точку для обозначения целой части дроби, а также отметьте галочкой пункт, если необходимо делить остаток.

Вам будет предоставлен ответ, где подробно расписан каждый шаг получения конечного числа. Ознакомьтесь с ним и можете переходить к следующим вычислениям.

Перед тем как делить остаток, внимательно изучите условие задачи. Часто этого делать не нужно, иначе ответ могут засчитать неправильным.

Всего за семь простых шагов мы смогли поделить десятичные дроби в столбик с помощью небольшого инструмента на сайте OnlineMSchool.

Способ 2: Rytex

Онлайн-сервис Rytex также помогает в изучении математики, предоставляя примеры и теорию. Однако сегодня нас интересует присутствующий в нем калькулятор, переход к работе с которым осуществляется следующим образом:

    Воспользуйтесь ссылкой выше, чтобы перейти на главную страницу Rytex. На ней кликните по надписи «Онлайн калькуляторы».

Опуститесь в самый низ вкладки и на панели слева отыщите «Деление столбиком».

Перед началом выполнения основного процесса прочтите правила использования инструмента.

Теперь в соответствующие поля введите первое и второе число, а затем укажите, нужно ли делить остаток, отметив галочкой необходимый пункт.

Для получения решения нажмите на кнопку «Вывести результат».

Теперь вы можете узнать, как было получено итоговое число. Поднимитесь выше по вкладке, чтобы перейти к вводу новых значений для дальнейшей работы с примерами.

Как видите, рассмотренные нами сервисы практически не отличаются между собой, разве что только внешним видом. Поэтому можно сделать вывод – нет разницы, какой веб-ресурс использовать, все калькуляторы считают правильно и предоставляют развернутый ответ по вашему примеру.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Калькулятор дробей: решение уравнений с дробями

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.

Онлайн калькулятор уравнений с дробями

Дробью в математике называется число, представляющее часть единицы или несколько её частей.

Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби — количество взятых этих частей целого.

Дроби бывают правильными и неправильными.

  • Правильной называется дробь, у которой числитель меньше знаменателя.
  • Неправильная дробь – если у дроби числитель больше знаменателя.

Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя:

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

  1. Поделить числитель дроби на её знаменатель
  2. Результат от деления будет являться целой частью
  3. Остаток отделения будет являться числителем

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление в столбик онлайн. Калькулятор наглядного деления.

Деление столбиком онлайн калькулятор может разделить столбиком два числа выдавая полностью расписанный процесс деления.

Калькулятор деления в столбик поддерживает целые числа, десятичные дроби,отрицательные числа и результат с остатком.

  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Для простоты вычислений умножим делимое 1.5 и делитель 9 на 10. Результат (частное) от этого не изменится. В результате пример сводится к делению следующих чисел:

159
9.166666666666
6
54
6
54
6
54
6
54
6
54
6
54
6
54
6
54
6
54
6
54
6
54
6

Просто введите делимое в поле 1 и делитель в поле 2 и нажмите кнопку “ВЫЧИСЛИТЬ”. Результат появится на экране.

Поддерживаются следующие виды чисел:

1. Целые(1,2,3. ). 2. Десятичное (1.1, 2,35). 3. Отрицательные (-7.35,-2). Дробные числа умножаются на 10 пока не станут целыми.

Разделить одно число на другое является самой сложной задачей арифметики. Данный калькулятор может помочь Вам разобраться как это сделать самостоятельно.

Самое важное запомните: Деление – это обратная операция умножения.

После проведения расчета нажмите на кнопочку “Расчет не верен” если Вы обнаружили ошибку. Или нажмите “расчет верный” если ошибок нет.

Этот калькулятор умеет умножать столбиком два числа.Можно умножать целые и дробные числа, положительные и отрицательные.

Сложение столбиком двух чисел. Можно сложить столбиком два любых числа. Показываются все переносы.

Калькулятор вычитает столбиком и показывает подробное решение.

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и десятичных дробей.

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Как работать с калькулятором обыкновенных дробей?

Калькулятор предназначен для решения простых дробей и дробей с целыми числами (смешанных). В будущем, планируется внедрение функции решения десятичных дробей, но в данный момент она отсутствует.

Для начала работы с дробным калькулятором необходимо понять очень простой принцип ввода данных. Все целые числа вводятся с помощью больших кнопок, расположенных слева. Все числители вводятся с помощью маленьких белых кнопок, расположенных в правом верхнем блоке цифр. Все знаменатели, соответственно, вводятся путем нажатия на кнопки в правом нижнем углу. Данный способ ввода данных является в некотором роде инновационным, поскольку четко разграничивает целое, числитель и знаменатель, что облегчает вычисления, экономит время и делает взаимодействие с приложением более эффективным. », после чего на цифру шесть на основной клавиатуре. В результате, получится готовый пример:

Теперь нажмите на кнопку равно и получите результат калькуляции. В примере выше проиллюстрирован практически весь арсенал возможностей калькулятора дробей. Точно таким же образом, вы можете осуществлять умножение, деление и вычитание дробей, как простых, так и алгебраических, с одинаковыми и разными знаменателями, целыми числами и т.д. Также, калькулятор может вычислить проценты от дробей, что требуется не так часто, но тем не менее очень важно для решения многих актуальных задач.

Если вам требуется сделать положительное число отрицательным, то сначала введите число, а потом нажмите на кнопку «+/-». После этого число или дробь автоматически обернется в скобки с отрицательным значением или наоборот (в зависимости от изначального статуса числа). Если необходимо удалить число, числитель или знаменатель, то воспользуйтесь соответствующей стрелкой Backspace, которая есть в блоке и числителя и знаменателя. Стрелки работают одинаково и по очереди стирают числа или знаки, находящиеся на дисплее калькулятора.

Управление калькулятором дробей с клавиатуры.

Использовать калькулятор дробей онлайн можно не только с помощью компьютерной мыши, но и с помощью клавиатуры. Здесь логика очень проста:

  1. Все целые числа вводятся как обычно, нажатиями на клавиши чисел.
  2. Все числители вводятся с добавлением клавиши CTRL (например, CTRL+1).
  3. Все знаменатели вводятся с добавлением клавиши ALT (например, ALT+2).

Действия умножения, деления, сложения и вычитания так же инициируются соответствующими кнопками клавиатуры, если они есть (обычно располагаются в правой части, в так называемой области Numpad). Удаление производится нажатием на клавишу Backspace. Действие очистки (красная кнопка «C») вызывается нажатием на клавишу «C». Квадратный корень – нажатием на соседнюю клавишу «V» . Удаление производится нажатием на клавишу Backspace.

Зачем нужен калькулятор дробей онлайн?

Калькулятор дробей онлайн предназначен для решения обыкновенных и смешанных дробей (с целыми числами). Решение дробей часто требуется школьникам и студентам, а также инженерам и аспирантам. Наш калькулятор предоставляет возможность производить с дробями следующие действия: деление дробей, умножение дробей, сложение дробей и вычитание дробей. Также, калькулятор умеет работать с корнями и степенями, а еще с отрицательными числами, благодаря чему он многократно превосходит аналогичные онлайн приложения.

Калькулятор простых дробей онлайн поможет вам решить примеры с дробями и при этом вам не надо беспокоиться о том, как предварительно сократить дробь. Здесь это сделается автоматически, т.к. приложение само вычисляет общий знаменатель и выдает вам готовый результат на экран.

В чем преимущества такого способа решения дробей?

Калькулятор поддерживает работу со скобками, что позволяет решать дроби даже в сложных математических примерах. В частности, действия со скобками часто требуются при вычислении алгебраических дробей или отрицательных дробей, над которыми постоянно приходится корпеть всем школьникам средних классов. Дополнительно, вы можете использовать этот калькулятор для сокращения дробей или решения дробей с разными знаменателями. Более того, в отличии от многих других бесплатных сервисов, данный калькулятор умеет работать с двумя, тремя, четырьмя и вообще с любым количеством дробей и чисел.

Калькулятор обыкновенных дробей полностью бесплатный и не требует регистрации. Вы можете использовать его в любое время дня и ночи. Работать можно с помощью мыши или прямо с клавиатуры (это касается как чисел, так и действий). Мы постарались реализовать максимально удобный интерфейс дробных вычислений, благодаря чему сложные математические калькуляции превратятся для вас в одно удовольствие! 🙂

Калькулятор дробей от MiroCalc.com | Омский образовательный портал |

В наше время в сети Интернет можно найти ответы на совершенно потрясающее количество вопросов из всех сфер нашей жизни. Ну и конечно же из сферы науки и образования. И это не только рефераты, диссертации и научные статьи — на самом деле можно найти совершенно что угодно, нпример, Калькулятор дробей от MiroCalc. com. Допустим потребовалось школьнику или студенту сложить, перемножить, разделить или вычесть пару обыкновенных (простых) дробей. Это тех самых, которые с числителем и знаменателем. И что с ними делать? Обычные калькуляторы, как правило, с таким добром работать не любят, поэтому придётся выполнять аж четыре действия — поначалу поделить одну дробь и тем самым привести её к десятичной, затем поделить вторую дробь, потом произвести между ними необходимое действие и уже полученный ответ приводить к виду простой дроби, что тоже может быть занятием не из приятных. Проще зайти на сайт в Интернете и там всё будет гораздо проще — ввёл одну дробь через косую черту, ввёл другую, выбрал знак операции между дробями — вжух! — и готово.

Не, ну можно конечно пойти и другим путём. При сложении и вычитании привести дроби к общему знаменателю, произвести операцию с числителями, а потом дробь сократить, если это возможно. Для деления и умножения потребуются уже совсем другие действия — числители делятся или умножаются сами по себе, а знаменатели — сами по себе. Ну и в конце не обойтись без сокращения… Однако как ни крути, а всё это надо знать, помнить, уметь всем этим пользоваться, ну и придётся похлопотать, совершая вычисления. Очевидно, гораздо проще просто зайти в интернет, перейти на сайт microcalc.com и там быстро и без лишних трудозатрат все вычисления будут произведены просто мгновенно.

В конечном итоге все эти современные технологии и даны нам для того, чтобы сделать нашу жизнь проще, удобнее и приятнее, а также сохранить побольше нашего времени. Хотя стоит признать, что если интернет и сохраняет наше время, то и отбирает его у нас ещё больше. Хотя на самом деле это уже совсем другая история…

Решебник с дробями — produktii-iz-finlandiii.ru

Скачать решебник с дробями EPUB

Калькулятор дробей с решением. Ваш онлайн / Математические калькуляторы / Решение дробей. Онлайн-калькулятор дробей поможет решать сложные примеры с обыкновенными и смешанными, правильными и неправильными дробями, в том числе и с многоэтажными. Если в примере есть многоэтажная дробь, то её можно (используя скобки) преобразовать в такой вид: Вы можете решать примеры, в которых содержится от 2 до 20 дробей.

Работать с калькулятором очень просто. Представляем вам калькулятор дробей онлайн с решением, в котором подробно описан каждый шаг: где сокращаем, на сколько умножаем или делим, почему вышло именно так, а не иначе.

Здесь вы можете. Калькулятор дробей онлайн произведет основные арифметические действия: сложение и вычитание, умножение и деление. Подробное решение примера с дробями!  Онлайн калькулятор дробей с подробным решением позволяет быстро развязать примеры с дробями разной сложности.

В программе можно осуществить: сложение. Компьютерные программы сегодня решают огромное количество задач. Как показала практика, не страшны человечеству вирусы и карантины. Учителя с детьми могут проводить занятия удалённо, через мобильные устройства и компьютеры. Задачи по физике, геометрии и даже дроби можно решить по фотографии.

Рассмотрим программы для этого и научимся ими пользоваться. Содержание. Калькулятор дробей с решением по картинке. Решение дробей в Photomath по фото. Решение дробей онлайн: сложение, вычитание, деление и умножение дробей. Калькулятор выдает ответ и подробное решение.  Калькулятор для решения дробей. Данный калькулятор дробей позволяет выполнять операции: умножение, деление, сложение и вычитание дробей онлайн.

Для введения отрицательной дроби надо написать отрицательное число в числителе или в целую часть.

Онлайн калькулятор дробей алгебраических обыкновенных (простых) и смешанных с подробным решением для сложения, вычитания, умножения и деления. Дробный калькулятор онлайн расчитывает произведение, разность, сумму и частное для двух дробей с выводом подробного решения, которое поволяет понять последовательность выполненния арифметических операций с дробями.

Дано: Решение: + − × ÷. = 4. 1. При просмотре на смартфоне — поверните экран. Онлайн калькулятор дробей может произвести сложение дробей, вычитание дробей, умножение дробей и деление дробей любого вида как с одинаковыми, так и с разными знаменателями и получить полное пошаговое решение примера.   Онлайн калькулятор дробей может произвести сложение дробей, вычитание дробей, умножение дробей и деление дробей любого вида как с одинаковыми, так и с разными знаменателями и получить полное пошаговое решение примера.

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и десятичных дробей.  Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей.

А так же дробей с целой частью и десятичных дробей. Основные возможности: Сложение, вычитание, деление и умножение дробей.

rtf, rtf, rtf, rtf

Похожее:


  • Укр літ 5 клас авраменко читати

  • Календарне планування історія україни 10 клас 35 годин

  • Рослинний і тваринний світ євразії презентація

  • Контрольна робота з математики 6 клас річна

  • Історія іграшок 2 онлайн українською

  • Що таке дифузія 5 клас

  • Презентація на тему право спільної власності
  • Калькулятор дробей онлайн с подробным решением примера

    Выполнить простейшие математические действия с дробями поможет калькулятор десятичных дробей онлайн. С его помощью можно:

    • сложить;
    • вычесть;
    • умножить;
    • разделить.

    Для вычисления необходимо заполнить поля, то есть вписать в них числитель и знаменатель. Выбрать нужное действие и нажать кнопку «равно». Если выражение имеет целую часть, то ее нужно внести в соответствующее поле.

    Решение


    Введите пример и нажмите кнопку «равно», после нажатия здесь появится подробное решение!

    Основные операции

    Решение целых дробей зависит от типа арифметического действия, которое будут производить.

    1. Сложение дробей выполняют по алгоритму:
    2. приводят их к общему знаменателю;
    3. складывают;
    4. находят наибольший общий делитель;
    5. сокращают;
    6. выделяют целую часть, если числитель в получившемся по итогу выражении больше знаменателя.
    7. Вычитание. Повторяют действия как при сложении, только вместо прибавления одного числителя ко второму, их минусуют.
    8. Умножение выполняют путем умножения чисел, расположенных над чертой и под ней.
    9. Деление:
    10. преобразовываем вторую часть уравнения;
    11. умножаем числители и знаменатели;
    12. находим НОД;
    13. сокращаем.

    Калькулятор дробей с решением позволяет упростить процесс вычисления. Вы вводите необходимые данные, а все этапы выполняет сервис и выводит результаты расчетов. Кроме того, он производит сокращение автоматически.

    Когда понадобится онлайн калькулятор

    Посчитать примеры любой сложности ─ задача онлайн сервиса. Если вы студент вуза, школьник, учитель или работник технического бюро, то такой калькулятор станет для вас верным помощником на все случаи. Максимально простое управление, быстрые расчеты, удобство пользования ─ достоинства виртуального «математика», который всегда под рукой.

    Сложение, вычитание, деление и умножение дробей

    Инструкции по использованию

    • Введите дроби в калькулятор выше.
    • Выберите математическую операцию, которую вы хотите выполнить (сложение, вычитание, умножение, деление), используя серый раскрывающийся список выбора между двумя дробями.
    • Результаты будут обновляться автоматически при изменении любого значения в калькуляторе.
    • Флажок под калькулятором позволяет вам выбирать между уменьшением дроби до эквивалента наименьшего общего знаменателя (если установлен) или отказом от уменьшения (если не отмечен).

    Как вычислить дроби вручную

    Как складывать дроби

    • Найдите наименьший общий знаменатель, умножив каждый знаменатель на другой.
    • Умножьте каждый числитель на те же числа, на которые были умножены знаменатели.
    • Сложите числители.
    • Уменьшить результат до наиболее упрощенного числа.

    Как вычесть дроби

    • Найдите наименьший общий знаменатель, умножив каждый знаменатель на другой.
    • Умножьте каждый числитель на те же числа, на которые были умножены знаменатели.
    • Складываем второй числитель с первого.
    • Уменьшить результат до наиболее упрощенного числа.

    Как умножать дроби

    • Умножьте числа сверху вместе.
    • Умножьте числа внизу вместе.
    • Уменьшить результат до наиболее упрощенного числа.

    Как разделить дроби

    • Переверните вторую дробь вверх дном, чтобы получить обратное число.
    • Умножьте дроби вместе (как в разделе умножения выше).
    • Уменьшить результат до наиболее упрощенного числа.

    Дроби: история, актуальность и популярное использование

    — Руководство, составленное Корин Б. Аренас, опубликовано 22 октября 2019 г.

    Практически каждый день мы имеем дело с дробями. Подумай об этом. Независимо от того, получаете ли вы четвертинки для разнообразия, покупаете одежду со скидкой 75% или готовите с половиной стакана масла, вы используете дроби.

    В этом разделе мы поговорим о происхождении дробей, их важности при передаче информации и золотом сечении.

    Что такое дроби?

    Дроби
    представляют части целого числа или любое количество равных частей. Он функционирует
    чтобы описать, как части соотносятся с целым числом.

    Для иллюстрации представьте целое число как торт. Если вы разрежете торт на 4 равные части, один кусок будет частью этого торта. В данном случае это 1/4 часть всего торта.

    • 1 представляет один фрагмент или часть целого числа, которое называется числителем.
    • 4 показывает, сколько всего частей содержится в целом числе, которое называется знаменателем.
    Краткая история дробей

    Происхождение слова: термин «дробь» происходит от латинского
    слово fractio
    что означает «сломать». В раннем английском языке это означает «сломанный кусок или
    фрагмент ». Английское слово« разрушение »также
    имеет то же происхождение слова.

    Концепция дробей существует более 4000 лет. Но у разных цивилизаций есть свой способ стандартизации дробей для универсального использования.

    Египтяне

    Согласно «Математике на протяжении веков: мягкая история для учителей и других», египтяне были одними из первых, кто придумал форму дроби еще в 1800 году до нашей эры. Их концепция в основном ограничивалась частями, иначе известными как единичные дроби. Дроби единиц используют 1 в качестве числителя.

    Египетские математики создали систему с основанием 10.
    идея, которая похожа на системы счисления, которые мы используем сегодня. Цифра
    иероглифы представляли их числа, что означает символы, соответствующие
    определенное значение.

    Поскольку числитель всегда равен 1, они должны были указать только знаменатель. Египтяне отметили знаменатель овалом или точкой над значением. Вот несколько примеров из книги «Математика сквозь века»:

    Части были выражены как суммы долей единиц.Однако система не позволяла повторять дроби единиц в этой последовательности, что затрудняло выполнение расчетов. Чтобы решить эту проблему, египтяне создали обширные списки таблиц, в которых указаны двойные значения различных частей.

    Вавилоняне

    Другая цивилизация, создавшая сложную систему для
    По словам преподавателя математики и автора Лиз Памфри, фракции принадлежали вавилонянам.

    Вавилоняне организовали фракции в группы по 60 человек (основание 60).Сегодня мы обычно группируем числа в группы по 10. Но для вычислений, таких как углы и минуты для времени, мы также используем основание 60. Система сгруппировала дроби по 10 и использовала два символа, один для единицы, а другой для 10.

    Ниже приведены символы, представляющие вавилонскую систему счисления от 1 до 20:

    .

    Однако у них не было символа нуля (который они позже добавили около 311 года до н.э.) или знака, который функционировал как десятичная точка для обозначения дробей целого числа.Это затрудняло интерпретацию чисел.

    Например, цифры ниже читаются как 12 и 15.

    По словам Памфри, символы также могут читаться как разные
    значения:

    x60 Шт. Шестидесятые Номер
    12 15
    12 15 720 + 15
    • 12 и 15 как отдельные номера
    • 15/12
    • 12 15/60
    • 720 + 15

    Как видите, отсутствие индикатора дроби делает его
    трудно отделить целые числа от дробей.Скорее всего, они полагались на контекст, чтобы
    разобраться в числовых значениях.

    Как египетская, так и вавилонская системы были переданы позже людям в Греции, а затем и к средиземноморской цивилизации.

    Греки

    В Греции практика использования дробных величин в качестве сумм
    единицы дроби были довольно распространены до средневековья. Например, Liber
    Abbaci итальянского математика Фибоначчи — это
    примечательный текст 13 века. Широко использовались дроби, описывающие
    различные способы преобразования других дробей в суммы единичных дробей.

    Чтобы лучше понять, ниже приведена таблица греческого языка.
    цифровые символы. Обратите внимание, что они такие же, как буквы в греческом
    алфавит:

    Значение Шт. Десятки сотен
    1 α ι ρ
    2 β κ σ
    3 γ λ τ
    4 δ µ υ
    5 ε ν φ
    6 ϝ ξ χ
    7 ζ ο ψ
    8 η π ω
    9 θ ϙ ϡ

    Греческий
    запись дробей требует от читателя понимания контекста для правильного
    интерпретация. Чтобы выделить дробь, они ставят диакритический знак
    знак (‘) после знаменателя дроби.

    Например, число β (2) становится ½ при записи с
    диакритический знак, β ’.

    Аналогично, µβ (42) становится 1/42 при записи в µβ ’.

    Однако здесь возникает путаница: µβ ’также может означать 40 ½. Вот почему понимание контекста имеет решающее значение при интерпретации греческих дробей.

    Римлянам

    У римлян дроби выражались только словами, которые
    усложняли любые вычисления.

    Их система была основана на единице веса, называемой «as».
    При таком подходе 1 «as» равнялось 12 унций (римский
    базовая единица измерения, основа современной унции). Таким образом, дроби
    имеют знаменатели со значениями, кратными 12.

    В таблице ниже указаны римские дроби.
    с соответствующими условиями:

    Дробь Римский термин
    11/12 deunx для de uncia, забрал 1/12
    10/12 декстанов для декстанов, отнято 1/6
    9/12 dodrans for de quadrans, 1/4 отнято
    8/12 bes — bi as for duae partes, 2/3
    7/12 перегородка для septem unciae
    6/12 полуфабрикаты
    5/12 quincunx для quinque unciae
    4/12 триенс
    3/12 квадранты
    2/12 секстан
    1/12 UNCIA
    1/24 semuncia
    1/48 сицилийский
    1/72 сценарий
    1/144 сценарий
    1/288 scrupulum
    китайский

    Китайцы написали Девять
    Главы по математическому искусству, датируемые примерно 100 годом до н. Э.С.
    Он включает текст о дробях, аналогичный тем, которые мы используем сегодня.

    Согласно «Математике на протяжении веков», он содержал большинство обычных правил вычисления с дробями, например, как складывать, делить и умножать дроби, а также сокращать дробь до наименьшего значения.

    Однако в их системе не использовались неправильные дроби. Например, вместо неправильной дроби 9/4 они использовали бы ее эквивалентную смешанную дробь 2 1/4.

    В отличие от западной математики, китайцы сосредоточились на практических приложениях, а не на теоретических рассуждениях и геометрии.

    Индейцы

    Индейцы разработали способ записи дробей,
    ближе к тому, что мы используем сегодня.

    До 1000 г. до н.э. индуистские мантры в ранний ведический период вызывали силы от десяти до ста и даже до триллиона, согласно сайту The Story of Mathematics. Это свидетельство того, что ранняя индийская цивилизация использовала сложные математические операции, включая дроби, квадраты, кубы и корни.

    Около 500 г.К., они придумали систему письма, называемую брахми, которая состояла из 9 цифровых символов и нуля. Учитель математики и писатель Лиз Памфри отмечает, что эти числа во многом повлияли на современные числа, которые мы используем сегодня. См. Изображение ниже.

    Индийская система записывала дроби, помещая одно значение поверх другого, точно так же, как сегодня числитель пишется над знаменателем. Однако они не поставили между ними черту. Например, дробь 4/5 будет выглядеть так:

    Позже эту систему использовали арабы при торговле с индейцами.Именно арабы нарисовали черту, чтобы отличить верхнее число от нижнего числа в дроби. В конечном итоге это привело к тому, что в современную эпоху мы пишем дроби.

    Как дроби улучшают способ передачи информации

    По словам доктора Петерсона из MathForum.org: «дроби были изобретены, чтобы обеспечить способ работы с величинами меньше единицы».

    Если люди использовали только целые числа, единственный способ сослаться на
    меньшие количества — использовать меньшие единицы. Это то, что сделали римляне — они
    использовали целые числа при измерении футов и использовали дюймы, когда им нужно было
    учитывать меньшие единицы.

    Например, вместо 1/12 фута они будут обозначать длину как 1 дюйм, а 1/4 фута будет 3 дюйма. Но что, если вы имеете в виду 2 с половиной фута? Как насчет 1 и 3/4 фута?

    Если вы выбираете стандартную длину в соответствии с футами, это
    сбивает с толку одновременное упоминание футов и дюймов. По сути,
    фракции позволяют проводить измерения без необходимости создания
    новые юниты.Было бы лучше учесть измерения в
    последовательная мода.

    США, как правило, больше используют дроби (английское измерение), поскольку они используют чашки, а не весы для измерения при приготовлении пищи и выпечке.

    американцев еще не приняли метрическую систему, которая является
    десятичная система, в которой используются единицы, относящиеся к десятичному коэффициенту.
    Метрическая система обычно использует граммы и литры вместо американских единиц измерения.
    за унции, чашки, пинты и так далее.

    В таблице ниже показано преобразование объема из английской единицы измерения в ее метрический эквивалент:

    США в метрические единицы преобразования объема

    9

    1/4 стакана или 2 жидких унции 9 0143 3 чашки или 1 ½ пинты

    3/4 фунта (12 унций)

    Стандартное количество в США (на английском языке) Метрический эквивалент
    1 чайная ложка 5 мл
    1 столовая ложка 15 мл
    60 мл
    1/3 стакана 80 мл
    1/2 стакана или 4 жидких унции 125 мл
    2/3 стакана 160 мл
    3/4 стакана или 6 жидких унций 180 мл
    1 стакан или 8 жидких унций или 1/2 пинты 250 мл
    1 ½ стакана или 12 жидких унций 375 мл
    2 стакана или 1 пинта или 16 жидких унций 500 мл
    700 мл
    4 чашки или 2 пинты или 1 литр 950 мл
    4 литра или 1 галлон 3. 8 л
    1 унция 28 граммов
    1/4 фунта (4 унции) 112 граммов
    1/2 фунта (8 унций) 225 граммов
    337 грамм
    1 фунт (16 унций) 450 грамм

    Более того, сохранение измерений в одной единице позволяет нам складывать, вычитать, умножать и легко делить дроби.Это устраняет проблему преобразования, которая невозможна, если измерения находятся между двумя разными единицами.

    Чтобы упростить вычисление дробей, воспользуйтесь калькулятором в верхней части этой страницы.

    В то время как десятичные дроби предоставляют альтернативный способ обозначения
    дроби (и более простой способ вычисления дробей с помощью калькулятора), это
    необходимо понимать традиционные дроби и то, как их значения влияют на
    целое число.

    По данным Thoughtco.com,
    студенты, которые не осваивают дроби в ранние годы, имеют тенденцию
    запутаться и испытать математическое беспокойство. Они также упомянули половину из восьми американских
    грейдеры не могут расположить дроби по значению.

    Интуитивное обучение дробям помогает детям развить более широкое понимание теоретических математических концепций, позволяя им использовать их в реальной жизни. Это намного лучше, чем запоминать таблицы с единицами измерения или символами.

    Золотое сечение и последовательность Фибоначчи

    В математике соотношение — это, по сути, сравнение двух
    числа, которые зависят от типа сравниваемых чисел.

    Вы можете встретить такой пример: 1: 3 или 1
    из 3. Например, бутылка концентрата апельсинового сока состоит из 1 части апельсина.
    сок и 3 части воды. Это также можно записать в виде дроби, 1/3.

    Коэффициенты относятся к дробям, потому что они сравнивают разные
    ценности, которые могут представлять собой целое. В этом примере бутылка целиком
    апельсинового сока.

    Золотое сечение
    — специальное число, представленное греческим символом phi (φ)
    с приблизительным значением 1. 618.

    Получается путем разделения линии на 2 части, так что длинный отрезок
    (а) деленная на короткую часть (б) равна всей длине, разделенной на
    длинный раздел.

    Чтобы лучше понять, вот иллюстрация со стандартным уравнением:

    Исторически сложилось так, что соотношение соблюдалось в древних
    такие сооружения, как Парфенон и пирамиды Египта. В Великой пирамиде
    Гизы отношение основания к высоте примерно 1.5717, что является
    близко к золотому сечению. Он также встречается в повторяющихся закономерностях в природе, таких как
    как лепестки цветов, ракушки, ветви деревьев и спиральные галактики.

    С другой стороны, Фибоначчи
    последовательность — еще одна известная математическая формула. Последовательность получена из
    сумма двух предшествующих чисел. Многие источники говорят, что Леонардо Фибоначчи
    (Леонардо Пизанский) популяризировал это в своей книге Liber Abacci.

    Но согласно Live Science,
    математик Кейт Девлин, автор книги «В поисках Фибоначчи: поиски
    «Откройте для себя заново забытого математического гения, который изменил мир», — заявляет
    что Леонардо Фибоначчи на самом деле не «открыл» последовательность.

    Древние санскритские письма, в которых использовались индо-арабские цифры
    системы были первыми, кто обсудил это за столетия до Леонардо Фибоначчи.

    Последовательность Фибоначчи выглядит так:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
    987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
    317811 и так далее…

    Когда математики создают квадраты на основе этой последовательности, они могут нарисовать спираль.

    Как золотое сечение связано с последовательностью Фибоначчи?

    Исследователи заметили, что когда вы берете любые два последовательных числа Фибоначчи, их отношение очень близко к золотому сечению.Таким образом, φ приблизительно равен 1,618. Чтобы дать вам представление, см. Таблицу ниже.

    A B B / A
    2 3 1,5
    3 5 1,614664 9014

    5 1,614664

    8 13 1,625
    Итог

    Понятие дроби разработали разные древние цивилизации. Одними из первых, кто изобрели дробную систему с обширными таблицами, были египтяне. Другие древние общества, такие как вавилоняне, греки, римляне и китайцы, также внесли свой вклад в его улучшение. Но на современные цифры и то, как мы пишем дроби, в основном повлияли индейцы, которые ввели индуистско-арабскую систему счисления.

    Использование дробей помогает нам легко передавать информацию об измерениях. Это не позволяет людям использовать разные единицы измерения, что упрощает их расчет.

    Наконец, дроби связаны со знаменитым золотым рационом и последовательностью Фибоначчи, которая во многом повлияла на то, как мы проектируем все виды структур.

    Об авторе

    Корин — страстный исследователь и автор финансовых тем, изучающий экономические тенденции, их влияние на население, а также то, как помочь потребителям принимать более мудрые финансовые решения. Другие ее тематические статьи можно прочитать на Inquirer.net и Manileno.com. Она имеет степень магистра творческого письма в Филиппинском университете, одном из ведущих учебных заведений в мире, и степень бакалавра коммуникационных искусств в колледже Мириам.

    Веселые мультфильмы по математике

    Калькулятор сложения дробей — Дюймовый калькулятор

    Добавьте две дроби, введя их ниже. Введите целые числа, используя пробел между целым числом и дробью.

    Результат в виде дроби:

    Результат как дробь

    Результат в виде десятичной дроби:


    Шаги к решению

    Результат как дробь

    Результат в виде десятичной дроби:


    Шаги к решению

    Результат как десятичный

    Результат в виде десятичной дроби:


    Шаги к решению



    Как складывать дроби

    Вы можете сложить две дроби за три простых шага.

    Следуйте этому примеру, показывающему, как сложить 13 и 14.

    Шаг первый: преобразование в дроби с общим знаменателем

    Первый шаг к сложению дробей — это согласование знаменателей каждой дроби. Преобразуйте каждый из них в эквивалентную дробь с совпадающим знаменателем с другим.

    Найдите наименьший общий знаменатель

    Вам нужно будет найти наименьший общий знаменатель для каждого знаменателя дроби. Наименьший общий знаменатель — это наименьшее число, на которое может делиться каждый знаменатель.

    Найдите множитель

    Затем найдите кратное для каждого знаменателя, которое можно умножить до наименьшего общего знаменателя. Чтобы найти кратное для каждой дроби, разделите наименьший общий знаменатель на знаменатель.

    Умножить на множитель

    Затем умножьте верхнее и нижнее число дроби на кратное, чтобы найти эквивалентные дроби с совпадающими знаменателями. Вы также можете использовать калькулятор эквивалентных дробей, чтобы найти дроби с совпадающим знаменателем.

    Например, преобразовываем дроби 13 и 14 в дроби с одинаковым знаменателем.


    Найдите наименьший общий знаменатель. Наименьший общий знаменатель 3 и 4 равен 12.


    Найти кратное для 13
    кратное = lcd ÷ знаменатель
    кратное = 12 ÷ 3 = 4

    Найдите эквивалентную дробь 13, используя кратное 4
    13 = 1 × 43 × 4
    13 = 412


    Найти кратное для 14
    кратное = lcd ÷ знаменатель
    кратное = 12 ÷ 4 = 3

    Найдите эквивалентную дробь 14, используя кратное 3
    14 = 1 × 34 × 3
    14 = 312.


    Таким образом, эквивалентные дроби 13 и 14 равны 412 и 312.

    Шаг второй: сложите числители

    Как только нижние числа каждой дроби совпадают, сложите верхние числа каждой вместе, чтобы найти результат.

    Просто сложите числители и положите их над общим знаменателем.

    Например, продолжим предыдущий пример и добавим 412 и 312.

    412 + 312 = 4 + 312
    412 + 312 = 712

    Шаг третий: упростите дробь

    Последний шаг к сложению дробей — это приведение результата к простейшему виду. Начните с поиска наибольшего общего множителя верхней и нижней частей результата.

    Затем разделите верхнее и нижнее числа на наибольший общий множитель, чтобы уменьшить его.Еще более простой способ уменьшить — использовать наш упрощатель дробей.

    Вы также можете складывать дроби с помощью нашего калькулятора дробей.

    Калькулятор фракций — Расчет фракций

    Fraction Calc — это специальный калькулятор для умножения, деления, сложения и вычитания двух или более дробей и целых чисел. Он может обрабатывать сразу несколько дробей и целых чисел. Затем он отображает пошаговые решения любой операции, которую он обработал.Иногда мало кто назовет это решателем дробей, в то время как другие могут сказать, что это калькулятор смешанных чисел или калькулятор смешанных дробей. Это онлайн-калькулятор с кнопкой дроби. На данный момент он может вычислять до десяти дробей и смешанных чисел. Это полезно для всех учащихся всех уровней обучения. Его можно использовать в качестве справочника для всех учителей математики и даже тех профессионалов, которые часто используют дроби на рабочем месте или дома.


    Как использовать?

    Этот калькулятор разработан для удобного использования.

    1. Нажмите любую цифру с помощью кнопок с цифрами.
    2. Нажмите любую цифру из кнопок знаменателя.
    3. Нажмите кнопку добавления (+) .
    4. Нажмите любую цифру на кнопках числителя для второй дроби.
    5. Нажмите любое число на кнопках знаменателя второй дроби.
    6. Нажмите кнопку «равно (=) », чтобы вычислить ответ. Ответ и решение будут отображаться выше.
  • Сложение трех и более дробей
    1. Повторите шаги выше, кроме последнего шага.
    2. Нажмите кнопку добавления (+) .
    3. Нажмите любую цифру на кнопках числителя для третьей дроби.
    4. Нажмите любое число из кнопок знаменателя для третьей дроби.
    5. Нажмите кнопку «равно (=) », чтобы вычислить ответ, или нажмите кнопку «добавить (+) », чтобы сложить дроби.
    6. Тот же процесс будет использован для четвертой, пятой или любого количества дробей. Просто нажмите равную кнопку (=) для вычисления.
  • Вычитание двух, трех или более дробей
    • Следуйте инструкциям по сложению дробей, но вместо нажатия кнопки добавления (+) нажмите кнопку вычитания (-) .
  • Умножение и деление двух, трех и более дробей
    • Следуйте инструкциям по сложению дробей, но вместо нажатия кнопки сложения (+) нажмите кнопку умножения (x) для умножения и кнопку деления (÷) для деления.
  • Сложение, вычитание, умножение и деление смешанных чисел
  • При работе со смешанными числами важно помнить, что при использовании этого калькулятора никогда не забывайте вводить целые числа.Кнопки с целыми числами в калькуляторе больше, чем кнопки числителя и знаменателя. Вам нужно только сначала нажать кнопку с целым числом, а затем с дробью, после чего вы можете перейти к любой операции, которую хотите.

  • Операции с дробями, целыми и смешанными числами
    1. Нажмите кнопку целого числа, если дробь состоит из целого числа, или вы можете напрямую нажать кнопку числителя, если целое число вам не нужно. Вы не можете нажать кнопку знаменателя, если вы не нажали кнопку целого числа или знаменателя.Это означает, что вам нужно сначала нажать кнопку целого числа или числителя. После нажатия кнопки числителя вы больше не можете нажимать кнопку с целым числом. Вы можете снова нажать кнопку целого числа, только если вы удалите числитель, нажав кнопку возврата. Не следует сначала нажимать нули. Ноль будет нажата после нажатия ненулевых чисел.
    2. Нажмите кнопку знаменателя для вашего знаменателя. После нажатия вы не сможете снова нажать целую цифру или кнопку с числителем. Вы можете нажать кнопку числителя только в том случае, если вы удалите знаменатель, нажав кнопку возврата.
    3. Выберите любую операцию, которую хотите.
    4. Нажмите кнопку Равно , если вы закончили с дробью. Решение будет отображаться выше.
    5. Нажмите Backspace , если вы хотите удалять по одному номеру за раз.
    6. Нажмите кнопку AC , чтобы очистить уравнение дроби.
    7. На данный момент этот калькулятор ограничен только 10 дробями.

    Расчет фракций на мобильных телефонах Android

    Выпущен наш Fraction Calc для мобильных телефонов Android.Он может обрабатывать основные и сложные операции дроби и может отображать решение как в методе перекрестного умножения, так и в методе ЖКД (наименьшего общего знаменателя). Вы можете получить его в магазине Google Play.

    Как производился расчет?

    Иногда возникают сомнения в том, как производится расчет при использовании нескольких операций. При использовании нотации MDAS умножение и деление имеют тот же приоритет, но выше, чем сложение и вычитание. Сложение и вычитание имеют одинаковый приоритет.Сначала обрабатывается более высокий приоритет. Это всегда правило, и его повсеместно соблюдают. Хотя с тем же приоритетом, операция выполняется слева направо.


    Калькулятор целых чисел

    Fraction Calc также является калькулятором дроби целых чисел, потому что он может обрабатывать множество целых чисел. Работа с целыми числами означает, что вам нужно больше учиться и делать дополнительные шаги, преобразовывая целые числа в формат, подходящий для математических операций.Выполнение математических операций с целыми числами означает, что вам придется проделать дополнительные шаги, чтобы получить правильный ответ. Это означает дополнительную энергию и нагрузку для людей, попавших в ситуацию, когда им приходится решать целые числа и дроби. Вот почему некоторые люди ищут калькулятор дробей и целых чисел, чтобы не только найти простые решения сложных проблем, но и сэкономить время и энергию. Экономия времени и энергии на выполнении определенной задачи означает, что вы получаете дополнительные ресурсы для выполнения еще более важной задачи, которая будет очень полезна.


    3 Калькулятор дробей

    В большинстве случаев в математической арифметике используются только две дроби. Очень редко в какой-либо операции задействованы 3 фракции. Но если это так, то вам очень повезло, что вы нашли этот инструмент. Вы можете легко использовать этот инструмент в качестве калькулятора трех дробей, потому что он может ее решить. Это основная цель этого инструмента. Некоторые люди никогда не слышали об этом инструменте, поэтому они специально искали калькулятор с 3 дробями.Но теперь, когда его инструмент создан, я думаю, у них больше нет времени для беспокойства.


    Калькулятор дробей

    Большинство созданных калькуляторов имеют ограниченные возможности до такой степени, что они могут вычислять только две дроби за раз. Но Fraction Calc может даже больше. Он может решить до 10 целых чисел или дробей вместе. Вот почему многие называют это калькулятором дробей. Это очень специализированный калькулятор с целыми числами.С комбинацией целого числа и дроби сложно справиться, но с этим калькулятором дробей вычисления становятся проще. Этот калькулятор может выполнять сложение смешанных чисел, преобразование дробей в целые числа, умножение дробей на целые числа, вычитание смешанных чисел и умножение смешанных дробей.


    Преимущества и недостатки использования калькулятора дробей.

    1. Легко использовать.
    2. Это экономит больше времени и энергии.
    3. Нет необходимости в ручном вычислении.
    4. Вычисленный результат точен и точен.
  • Недостатки:
    1. Может утомить вычисление дробей.
    2. Вы будете очень зависеть от него в будущем.
    3. Вы можете забыть правила вычислений.

    Правила работы с дробями

    • Сложение и вычитание дробей
    • Сложение и вычитание дроби происходит по тем же правилам.У них должны быть одинаковые знаменатели для обработки выбранной операции. Вы можете сложить или вычесть две дроби, если у них одинаковый знаменатель, если нет; вы должны создать общий знаменатель, прежде чем добавлять или вычитать их.

      Подобные дроби — это дроби с одинаковыми знаменателями. Чтобы сложить дроби с одинаковым знаменателем, добавьте его числитель. Например, 2/5 + 1/5 = 3/5.

      Дроби с разными знаменателями не похожи на дроби. Чтобы сложить непохожие дроби, вам нужно сделать так, чтобы у них был общий знаменатель.Самый простой способ сделать это — использовать метод бабочки. Чтобы выполнить метод бабочки, выполните следующие действия.

    1. Умножьте числитель первой дроби на знаменатель второй дроби. Результатом будет числитель первой дроби.
    2. Умножьте знаменатель первой дроби на знаменатель второй дроби. Результатом будет новый знаменатель первой дроби.
    3. Умножьте числитель второй дроби на знаменатель первой дроби.Результатом будет новый числитель второй дроби.
    4. Умножьте знаменатель второй дроби на знаменатель первой дроби. Результатом является новый знаменатель второй дроби.

    Например: 2/3 + 3/5.

    1. 2 x 5 = 10.
    2. 3 x 5 = 15.
    3. 3 x 3 = 9.
    4. 5 x 3 = 15.

    Новая дробь — 10/15 и 9/15.
    10/15 + 9/15 = 19/15.
    Новая дробь — 19/15.

    Чтобы вычесть дроби с одинаковым знаменателем, просто вычтите числитель второй дроби из числителя первой дроби. Пример: 4/6 — 3/6 = 1/6.

    Для дробей с разным знаменателем установите одинаковый знаменатель с помощью метода бабочки, а затем произведите вычитание после того, как у них будет одинаковый знаменатель.

  • Умножение и деление дробей
  • Правило умножения двух дробей простое. Умножьте числитель первой дроби на числитель второй дроби и умножьте знаменатель первой дроби на знаменатель второй дроби.Пример: 2/3 x 1/5 = 2/15.

    Чтобы разделить две дроби, вы должны сначала инвертировать вторую дробь, а затем начать умножение двух дробей. Пример: 2/3 разделить на 1/5 = 2/3 x 5/1 = 10/3.

  • Как заменить неправильную дробь на смешанное число
  • Когда вы сокращаете неправильную дробь до наименьшего члена, вам нужно изменить ее на смешанное число. Это делается путем деления числителя на знаменатель. Частное будет целым числом. Остаток будет новым числителем, а знаменатель останется без изменений.

  • Как изменить смешанное число на неправильную дробь
  • При делении или умножении смешанных чисел вам нужно преобразовать его в неправильную дробь. Это делается путем умножения целого числа на знаменатель и добавления текущего числителя. Результатом будет новый числитель, а знаменатель останется без изменений.

  • Сравнение дробей
  • Для дробей с одинаковыми знаменателями дробь с наибольшим числителем является большей дробью, чем дробь с меньшим числителем.
    Для дробей с одинаковыми числителями дробь с наибольшим знаменателем меньше дроби с меньшим знаменателем.

  • Упрощающие дроби
  • Из темы выше мы уже знаем, что есть эквивалентные дроби-дроби, которые имеют одинаковое значение, даже если у них разные числители и знаменатели. Упрощение дроби означает, что используется наименьший числитель и знаменатель, но одно и то же значение. Дробь находится в своей простейшей форме, когда нет общего множителя для числителя и знаменателя.Например, вместо 7/14 мы можем использовать ½, что является самой простой формой.

  • Наибольший общий коэффициент
  • Наибольший общий делитель — это наибольшее число, используемое для деления числителя и знаменателя, чтобы получить простейшую форму дроби. Например, для дроби 12/30 наибольшее число для деления числителя и знаменателя равно 6. Разделив его на 6, вы придете к его простейшей форме — 2/5.


    Факты о дробях

    Дроби — это части целого.Например, один торт на пятерых детей. Итак, торт делится на пять частей. Каждый ребенок получит по одной части торта. Дробь будет 1/5. Каждый ребенок получит 1/5 торта.

    Дробь состоит из двух частей. Верхняя половина называется числителем. Нижняя половина называется знаменателем. Числитель — это часть целого, в которой он используется или обрабатывается в настоящее время.

    Существует три типа дробей: правильная дробь, неправильная дробь и смешанные числа.

    Правильная дробь — это дробь, числитель которой всегда меньше знаменателя.

    Неправильная дробь — это дробь, числитель которой больше или равен знаменателю.

    Смешанное число представляет собой целые числа плюс дробь.

    Эквивалентные дроби — это дроби с разными числителями и знаменателями, но одинаковыми значениями, например 1/2, 2/4, 7/14, 8/16, 10/20, 20/40 и 50/100.


    Как рассчитывалась фракция?

    Когда я был студентом, у меня был этот предмет по математике.Одна из тем была о фракции. Хотя эта тема сложна, меня очень удивило, почему так трудно определить, правильное решение или неправильное. Вы должны просмотреть его несколько раз, чтобы убедиться, что ваше решение правильное. Это случилось не только со мной. Я узнал, что большинство студентов испытали то же самое. Так что с этого момента я мечтаю, что так или иначе помогу им. Я помогу им убедиться, что их решение верное, не проходя много обзоров.Вот почему я создал этот калькулятор. Этот калькулятор был создан в качестве справочника или руководства только для того, чтобы убедиться, что учащийся правильно ответит на свои задачи с дробями. От основателя FractionCalc.com

    Калькулятор дробей

    -5 класс по математике

    Овладейте 7 столпами школьной успеваемости

    Повысьте свои оценки и снизьте уровень стресса

    Калькулятор сложения и вычитания дробей

    Умножение дробей

    калькулятор

    Просмотр дробей

    Сложение дробей

    Вычитание дробей

    Умножение дробей

    Деление дробей

    Шаг

    для видео охватывает шаг сложения дробей

    Как складывать дроби

    1.Если знаменатели совпадают, сложите верхние числа (числитель), поместите это число над общим знаменателем и упростите.

    2. Если знаменатели разные, то

    найдите наименьший общий знаменатель (который является наименьшим общим кратным знаменателей)

    3. Умножьте каждый знаменатель на недостающий множитель, чтобы получить наименьший общий знаменатель для каждая фракция.

    4. Умножьте числитель на число из шага 3 и поместите это число над наименьшим общим кратным.

    5. Сложите числители двух дробей и поместите их над наименьшим общим кратным.

    6. Упростите дробь.

    В этих двух видео рассказывается, как умножать дроби с пошаговыми инструкциями и примерами задач.

    Как умножать дроби

    Шаг 1. Умножение числителей

    Шаг 2. Умножение знаменателей

    Шаг 3. Упростите дробь

    Вычитание дробей похоже на сложение дробей, но вместо этого вы вычитаете числители. их сложения

    1.Убедитесь, что знаменатели совпадают. Если нет, найдите наименьшее общее кратное и умножьте каждую дробь на недостающие множители, чтобы получить общие знаменатели.

    2. Вычтите числители и поместите это число над общим знаменателем

    3. По возможности упростите.

    Как разделить дроби

    Шаг 1. Создайте обратную величину второй дроби, перевернув дробь вверх дном

    Обратное значение 1/2 = 2/1 Обратное значение 3/4 = 4/3

    Шаг 2.Умножьте первую дробь на обратную величину второго члена

    Шаг 3. Упростите дробь, если возможно

    Анимация для деления дробей, как разделить 1/2 ÷ 1/6

    Используйте этот калькулятор дробей, чтобы помочь проверьте свою работу.

    Это универсальный калькулятор дробей, включающий в себя все следующее:

    Common Core Standard: 5NF.A.1 5th Grade Math

    Калькулятор дробей — базовые и расширенные вычисления с дробями

    Использование Этот калькулятор дробей позволяет легко выполнять вычисления с дробями.Складывайте, вычитайте, умножайте и делите дроби, а также возводите дробь в степень (дробь или нет). Поддерживает оценку смешанных дробей (например, «2 1/3») и отрицательных дробей (например, «-2/3»). Используйте «пи» или «π» вместо числа Пи. Мощный расширенный режим для вычисления целых выражений с дробями.

    Использование калькулятора дробей

    Калькулятор дробей предлагает два режима: основной и расширенный. Базовый режим поддерживает одну операцию (сложение, вычитание, умножение, деление, возведение в степень) только с двумя дробями, например.1/2.

    Калькулятор поддерживает:

    • Простые дроби: — например, 1/2, 3/4, 13/5 в обоих режимах.
    • Смешанные фракции: — например, 1 1/2, 2 3/4, 10 3/5 в обоих режимах. Убедитесь, что вы оставили один пробел между целой частью и дробной частью.
    • Десятичные дроби: — например, 1.5, 3.45, 10.01 в обоих режимах. Вы также можете ввести такие вещи, как 1,5 / 2,5. Убедитесь, что вы используете точку (.) В качестве десятичного разделителя.
    • Разделители тысяч: вы можете вводить большие числа, используя запятые в качестве разделителей тысяч, например.у).
    • Группировки / круглые скобки: в расширенном режиме вы можете использовать круглые скобки для группировки элементов и принудительного порядка вычислений. В противном случае расчеты производятся в обычном порядке.
    • Число Пи (π): вы можете ввести «пи» или «π» в обоих режимах, например pi / 2 в базовом режиме, (pi + 5) / 2 в расширенном режиме. Он будет автоматически преобразован в правильное значение приблизительно 3,14159.
    • Отрицательные дроби: оба режима поддерживают отрицательные дроби, десятичные дроби и числа.

    В расширенном режиме порядок вычислений в инструменте следующий: круглые скобки, экспоненты, умножение, деление, сложение, вычитание (PEMDAS).

    Результат представлен в виде десятичного числа (точность 12 позиций после десятичной точки) и в виде упрощенной смешанной дроби.

    Как считать дроби

    Принципы математики дробей одинаковы, независимо от того, кодируете ли вы их в калькуляторе или выполняете вычисления вручную. Во-первых, при сложении или вычитании дробей вам нужно начать с поиска наименьшего общего знаменателя, также известного как наименьший общий знаменатель или наименьший общий знаменатель дробей, с которыми вам нужно работать.Это по определению наименьшее положительное целое число, которое делится на каждый знаменатель. ЖК-дисплей — это наименьшее общее кратное (НОК) знаменателей дробей. В этой операции нет необходимости при умножении, делении или возведении в степень.

    Затем вам нужно преобразовать смешанные дроби в простые дроби, чтобы с ними было легче работать. Чтобы найти числитель простой дроби, умножьте целую часть на знаменатель и прибавьте к нему числитель дробной части. Знаменатель останется прежним.

    Наконец, выполните необходимые операции (сложение, вычитание, умножение, деление), работая с числителями. Затем вы получите результат расчета. Конечно, гораздо проще использовать такой мощный калькулятор дробей, как наш выше.

    Иллюстрируя пошаговый процесс, это:

    1. при сложении или вычитании дробей найдите наименьший общий знаменатель
    2. преобразование смешанных дробей в простые дроби
    3. выполнять арифметические действия с числителями

    Это не так сложно, но в определенных сценариях может быть сложно сделать вручную, что не является проблемой для онлайн-калькулятора.

    Практические примеры

    Пример задания № 1: сложить дроби 1/2 и 3/4.

    Решение: Наименьший общий знаменатель 2 и 4 равен 4, поэтому 1/2 = 2/4, а 3/4 остается 3/4. Складываем 2 + 3 = 5, получаем 5/4. В виде смешанной дроби, равной 1 1/4, в десятичном виде: 1,25.

    Пример задания № 2: вычесть дроби 1 1/5 и 2/3.

    Решение: сначала преобразуйте 1 1/5 в простую дробь по формуле (1 x 5 + 1) / 5 = 6/5. Наименьший общий знаменатель 5 и 3 равен 15, поэтому 6/5 = 18/15 и 2/3 = 10/15.Вычитая 10 из 18 = 8, получаем 8/15. Это не может быть далее упрощено. В десятичном виде это 0,53 (3). Вы можете проверить результат с помощью нашего инструмента.

    Пример задания № 3: Умножение дробей 1/3 и 5/8

    Решение: Чтобы вычислить это выражение, просто перемножьте числители, а затем знаменатели. Умножив 1 на 5, мы получим 5, умножив 3 на 8, получим 24, поэтому ответ будет 5/24, или 0,2083 (3).

    Калькулятор дробей

    Калькулятор выполняет базовые и расширенные операции с дробями, выражениями с дробями, объединенными с целыми числами, десятичными знаками и смешанными числами.Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Решайте задачи с двумя, тремя или более дробями и числами в одном выражении.

    Правила для выражений с дробями:

    Дроби — используйте косую черту «/» между числителем и знаменателем, т.е. для пяти сотых введите 5/100 . Если вы используете смешанные числа, не забудьте оставить один пробел между целой и дробной частью.
    Косая черта разделяет числитель (число над дробной чертой) и знаменатель (число ниже).

    Смешанные числа (смешанные дроби или смешанные числа) записываются как ненулевое целое число, разделенное одним пробелом и дробью, то есть 1 2/3 (с тем же знаком). Пример отрицательной смешанной дроби: -5 1/2 .
    Поскольку косая черта является одновременно знаком для дробной линии и деления, мы рекомендуем использовать двоеточие (:) в качестве оператора деления дробей, то есть 1/2: 3 .

    Десятичные числа (десятичные числа) вводятся с десятичной точкой . , и они автоматически конвертируются в дроби — i. 1/2
    • сложение дробей и смешанных чисел: 8/5 + 6 2/7
    • деление целого и дробного числа: 5 ÷ 1/2
    • комплексные дроби: 5/8: 2 2/3
    • десятичное в дробное: 0.625
    • Дробь в десятичную: 1/4
    • Дробь в проценты: 1/8%
    • сравнение дробей: 1/4 2/3
    • умножение дроби на целое число: 6 * 3/4 ​​
    • квадратный корень дроби: sqrt (1/16)
    • уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
    • выражение в скобках: 1 / 3 * (1/2 — 3 3/8)
    • составная дробь: 3/4 от 5/7
    • кратная дробь: 2/3 от 3/5
    • разделите, чтобы найти частное: 3/5 ÷ 2 / 3

    Калькулятор следует известным правилам порядка операций .Наиболее распространенные мнемоники для запоминания этого порядка операций:
    PEMDAS — круглые скобки, экспоненты, умножение, деление, сложение, вычитание.
    BEDMAS — Скобки, экспоненты, деление, умножение, сложение, вычитание
    BODMAS — Скобки, порядок, деление, умножение, сложение, вычитание.
    GEMDAS — Группирующие символы — скобки () {}, экспоненты, умножение, деление, сложение, вычитание.
    Будьте осторожны, всегда выполняйте умножение и деление перед сложением и вычитанием .Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны вычисляться слева направо.

    Задачи с дробями:

    следующие математические задачи »

    Сложение, вычитание, умножение, деление, упрощение дробей

    Простой, но мощный калькулятор дробей для решения нескольких типов математических задач с дробями.

    Как пользоваться калькулятором дробей

    Это довольно простой калькулятор дробей, и вы должны уметь без особых проблем складывать, вычитать, умножать и делить дроби, целые числа и смешанные дроби.

    Это действительно так же просто, как ввести числа, которые вы хотите вычислить, в каждое из полей и затем щелкнуть «Калькулятор».

    Для кого предназначен этот калькулятор дробей?

    Мы создали этот инструмент, чтобы помочь вам быстро выполнить всевозможные вычисления дробей и получить ответ. Это очень полезно для множества разных пользователей:

    • Учителя. Учителя могут использовать этот калькулятор, чтобы придумывать задачи для тестирования своих учеников
    • Родители.Если вы хотите помочь своим детям с помощью дополнительных дробей, вам тоже нужно знать ответ!
    • студентов. Студенты часто используют этот инструмент, чтобы проверить правильность полученного ответа.
      Вышеупомянутые калькуляторы дробей стали полезным учебным пособием. Убедитесь, что вы не используете его для обмана на тестах, а вместо этого используйте его, чтобы убедиться, что ваши ответы верны.

    Если вы застряли на какой-то проблеме, во что бы то ни стало используйте калькулятор, но не забудьте вернуться назад и научиться вычислять самостоятельно в следующий раз, чтобы каждый раз улучшать свои результаты.

    Отзыв о калькуляторе

    Мы постарались сделать этот калькулятор максимально простым и легким в использовании, но если у вас возникнут какие-либо проблемы или возникнут ошибки, свяжитесь с нами, и мы сразу же их исправим.

    Цитируйте, дайте ссылку или ссылайтесь на эту страницу

    Если вы нашли этот контент полезным в своем исследовании, пожалуйста, сделайте нам большое одолжение и используйте приведенный ниже инструмент, чтобы убедиться, что вы правильно ссылаетесь на нас, где бы вы его ни использовали.Мы очень ценим вашу поддержку!